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Abstract

The problem of guiding a hypersonic gliding vehicle in the terminal phase to a target

location is considered. In addition to the constraints on its final position coordinates, the

vehicle must also impact the target from a specified direction with very high precision.

The proposed 3-dimensional guidance laws take simple proportional forms. The analysis

establishes that with appropriately selected guidance parameters the 3-dimensional guided

trajectory will satisfy these impact requirements. We provide the conditions for the initial on-

line selection of the guidance law parameters for the given impact direction requirement. The

vehicle dynamics are explicitly taken into account in the realization of guidance commands.
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To ensure high accuracy in the impact angle conditions in an operational environment, we

develop closed-loop nonlinear adaptation laws for the guidance parameters. We present

the complete guidance logic and associated analysis. Simulation results are provided to

demonstrate the effectiveness and accuracy of the proposed terminal guidance approach.

I. Introduction

Recent interests in developing on-demand global-reach payload delivery capability have

brought to the forefront a number of underlying technological challenges. Such operations

will involve responsive launch, autonomous entry flight, and precision terminal maneuvers. In

certain scenarios the mission requirements call for the payload to impact the target location

from a specific direction with supersonic speed. One example is to impact the target in

a direction perpendicular to the tangent plane of the terrain at the target. The terminal

guidance system will be responsible for directing the vehicle to the target and achieving the

desired impact direction. The impact precision requirements under the scenarios considered

are very high and stringent. For instance, the required Circular Error Probable (CEP) of the

impact distance is just 3-meter.1 The errors of the impact angles are desired to be within 0.5

deg. The very high speeds throughout the terminal phase only make it considerably more

difficult to achieve these levels of precision. Yet cost considerations dictate that the terminal

guidance algorithm should be relatively simple and computationally tractable for real-time

operations.

While a number of guidance methods can guide the vehicle to the target, not many

address the unique need for impact from a specific direction. One method that can is the so-

called “dive-line” guidance approach in Ref. 2. In this method one or more lines intersecting

the Earth are established. The final dive-line intersects the target, and its direction can be

set to the desired direction. The vehicle’s velocity vector is then steered toward the dive-lines

by a cross-product guidance law. Another guidance method discussed in Ref. 3 fits a single-

segment cubic spline between the current vehicle position and the target location, assuming
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that the vehicle’s motion is constrained to lie in a vertical plane. The value of the final flight

path angle is one of the parameters that are used to define the cubic spline. The vehicle then

is guided to follow this cubic curve. Under the assumption of perfect tracking, the final flight

path angle will be as required (there is, however, no mechanism to control the azimuth of

the final trajectory of the vehicle). Yet the numerical experiments reported in Ref. 4 suggest

that the accuracy of these two methods would not be adequate for our current applications.

Under the linearization approximation, a planar engagement problem with a final impact

angle constraint is formulated as a numerical optimal control problem in Ref. 5 where the

impact angle constraint is treated as a penalty term. Aside from the linearization limitations,

it is not clear how realistic the computation requirements will be for such a purely numerical

approach in the current applications we are considering, especially when the problem has to

be solved in three-dimensional motion. Two-dimensional intercept with a final impact angle

constraint is again the subject of Ref. 6. The key assumptions necessary for the analytical

solution obtained therein are constant velocity and small error angles. With these conditions

a time-varying bias term is added in a proportional-navigation guidance law to achieve the

final impact angle condition. The constant velocity approximation is completely invalid in

our current applications, since the velocity can have variations up to 60% and more.

We propose an adaptive guidance approach for the above problem in a proportional-

navigation form. An earlier, non-adaptive version of the guidance law in the horizontal plane

is analyzed in Ref. 7. In this paper we present the guidance law in the vertical direction, thus

extending the approach to 3-dimensional (3D) flight. We provide the analysis to establish the

achievement of impact on the target by the 3D guided trajectory. Unlike many other guidance

approaches, we do not rely on approximations such as constant velocity or linearization.

The guidance method can guide the vehicle to the target from any initial conditions in 3D

space within the maneuvering capability of the vehicle. Furthermore, the properties of the

guided trajectory discovered in the analysis allow us to conveniently devise guidance logic

and guidance parameter selection criteria to meet the impact direction requirement. These
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guidance parameters are further updated by closed-loop nonlinear adaptation laws to ensure

high precision in the impact angle conditions. In this paper the word “adaptive/adaptation”

is used in the context of continuously updating certain gains in a closed-loop fashion to

ensure that some specified targeting conditions are accurately achieved. No estimates of

unknown system parameters are involved as in a conventional adaptive control setting.

The efficacy of the proposed approach is demonstrated by the simulations of the trajec-

tories of a hypersonic maneuvering vehicle. The terminal conditions are all met with a high

degree of accuracy. Comparison with optimal solutions reveals interestingly that when the

final heading angle is free, the guided trajectories and guidance commands exhibit behaviors

that are quite close to those of the optimal trajectories.

II. Analysis of Guidance Laws

For development purposes, an Earth-fixed coordinate system is defined to be as shown

in Fig. 1. The target is at the origin of the coordinate system. We will focus on a fixed

target in the following discussion, although most of the development would be applicable to

a mobile target if the motion variables in the subsequent sections are replaced by those for

the relative motion between the vehicle and the target. The x-axis is pointed to the East,

the y-axis to the North, and the z-axis completes the right-hand system. The line-of-sight

(LOS) from the target to the vehicle is defined by the azimuth angle θ and elevation angle

φ, where −π ≤ θ ≤ π is measured from positive x-axis in a counterclockwise direction, and

0 ≤ φ ≤ π/2. These angles can be calculated from the known coordinates of the target and

navigation-derived coordinates of the vehicle.

The standard 3-dimensional equations of motion of a gliding vehicle over a flat Earth can
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be found in, for instance, Ref. 8

ẋ = V cos γ sinψ (1)

ẏ = V cos γ cosψ (2)

ż = V sin γ (3)

V̇ = −D
m

− g sin γ (4)

γ̇ =
L cosσ

mV
− g

V
cos γ (5)

ψ̇ =
L sin σ

mV cos γ
(6)

where the position coordinates are x, y, and z. The Earth-relative velocity is V . The flight

path angle γ is the angle between the relative velocity vector and the horizontal plane. The

vehicle heading angle ψ is the angle between the horizontal projection of the velocity vector

and north, measured in a clockwise direction in the horizontal plane. We choose to limit the

range of ψ by −π ≤ ψ ≤ π. The gravity acceleration g = 9.81 m/s2 is treated as a constant.

Since only unpowered flight is considered, the vehicle mass is also a constant. The terms D

and L are the aerodynamic drag and lift forces which are dependent on the angle of attack

α, altitude z and velocity V . The bank angle of the vehicle is σ.

By the definition of the coordinate system, the target is at the origin. Suppose that

Ψf and Γf are the heading angle and flight path angle, respectively, that define the desired

impact direction of the vehicle just before it reaches the target (cf. Fig. 1). Therefore the

vehicle needs to achieve the following final conditions

xf = yf = zf = 0 (7)

γf = Γf (8)

ψf = Ψf (9)

One special case is when Γf = −90 deg (vertical impact). In such a case the constraint

(9) must be removed because ψf is not defined for vertical impact. It should be stressed,
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Figure 1: Coordinate system and geometry (both γ < 0 and ψ < 0 as shown)

however, that the vehicle’s turning capability usually is the limiting factor for how much final

heading adjustment, as defined in Eq. (9) can be achieved. This is because in the application

scenarios under consideration the vehicle is flying at hypersonic speeds. At such speeds the

vehicle cannot make significant heading changes in a short period of time. Therefore the

initial conditions for the terminal guidance phase should be such that it is feasible for the

vehicle to achieve the terminal conditions (7)-(9) subject to its maneuverability constraints.

The function of the terminal guidance system is to determine the direction of the flight,

defined by γ and ψ, to achieve the required final conditions (7)-(9). We propose the following

proportional-navigation guidance laws for the commanded heading angle ψcom and flight path

angle γcom

ψ̇com = −λ1θ̇ (10)

γ̇com = −λ2φ̇ (11)

where the guidance parameters λ1 and λ2 are taken to be constants in this section unless
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otherwise specified. The horizontal guidance law (10) is fully analyzed in Ref. 7, where it

is assumed that the vehicle can track the guidance command perfectly, i.e., ψ ≡ ψcom. The

following two key properties of the guidance law (10) have been established:7

1. For arbitrary variations of V and |γ| < 90 deg, and for any initial conditions except for

θ(0) +ψ(0) = π/2, the guidance law (10) with λ1 > 1 ensures that s =
√
x2 + y2 → 0.

The only exception of θ(0)+ψ(0) = π/2 corresponds to the case where the vehicle flies

away from the target along the LOS from the target to the vehicle, a pathological case

that will not happen in reality.

2. For all λ1 > 2, the trajectory of the vehicle on the xy-plane will converge to a straight

line passing through the origin (target) with a configuration of θ + ψ = −π/2.

The analysis of the vertical guidance law (11) will be greatly simplified when the second

property above is taken into consideration. Suppose that a λ1 > 2 is used. After an initial

transient period, the 3-dimensional trajectory of the vehicle will practically be confined in a

vertical plane containing the origin, and the velocity vector projection on the xy-plane will

be directed toward the origin. In this vertical plane the kinematics of the vehicle may be

represented by

ż = V sin γ (12)

ṡ = −V cos γ (13)

where once again, s =
√
x2 + y2 is the range-to-go. The reader is referred to Fig. 1 for the

geometry, with the reminder that the horizontal velocity component V cos γ now points to

the origin. The elevation angle φ then is determined by

φ = tan−1
(z
s

)
(14)

Using Eqs. (12) and (13), the derivative of φ can be readily found to be

φ̇ =
V

r
sin(φ+ γ) (15)

7



where r =
√
s2 + z2 =

√
x2 + y2 + z2. The derivative of r is also easily obtained

ṙ = −V cos(φ+ γ) (16)

Define

η = φ+ γ (17)

Then η̇ = φ̇ + γ̇. Again let us assume perfect tracking of the guidance command so that

γ̇ = γ̇com. By the guidance law (11) and Eq. (15)

η̇ = φ̇+ γ̇ = (1 − λ2)φ̇ = (1 − λ2)
V

r
sin η (18)

Dividing Eq. (16) by Eq. (18) results in

dr

dη
=

1

(λ2 − 1)

r cos η

sin η
(19)

Upon integration, the above equation yields

r = c| sin η| 1
λ2−1 (20)

where c > 0 is an integration constant. Consider the case of 0 < η(0) < π for the moment.

Substituting Eq. (20) into Eq. (18) gives

η̇ =
(1 − λ2)V

c
(sin η)

λ2−2
λ2−1 (21)

For any chosen λ2, the sign of η̇ will remain unchanged for all t ≥ 0. In particular η̇ < 0

and η will continue to decrease to zero if λ2 > 1. In such a case the solution of r in Eq. (20)

indicates that r → 0 when η → 0. Moreover, Eq. (21) also reveals that η̇ → 0 as η → 0

if λ2 > 2. Since η̇ = (1 − λ2)φ̇, η̇ → 0 ⇒ φ̇ → 0. Hence φ approaches a constant and γ

approaches the negative of the same constant. This means that the trajectory in the vertical

sz-plane converges to a straight line passing through the origin with γ = −φ. A similar

analysis leads to the same conclusions in the case where −π < η(0) < 0.

Combining the above analysis and the results in Ref. 7, we have the following conclusions

for guidance laws (10) and (11)
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1. For arbitrary variations of V , the guidance laws (10) with λ1 > 1 and guidance law

(11) with λ2 > 1 ensure that r =
√
x2 + y2 + z2 → 0.

2. For λ1 > 2 and λ2 > 2, the 3D trajectory of the vehicle will converge to a straight

line passing through the origin (target) with the configuration of θ + ψ = −π/2 and

φ+ γ = 0.

Note that even though the guidance laws (10) and (11) are decoupled in two indepen-

dent channels, the above analysis establishes the simultaneous satisfaction of the 3 impact

conditions in Eq. (7), since r =
√
x2 + y2 + z2 → 0 is the result. No less noteworthy is the

fact that the analysis and global convergence results of the guidance laws (10) and (11) in

the 3D space do not require any assumptions of small perturbations or constant velocity, as

is usually required in many other approaches.

It is not difficult to show that if λ2 is not a constant, but time-varying, Eq. (19) can still

be integrated by parts to arrive at a result similar to Eq. (20). The difference is that the

constant c in Eqs. (20) and (21) is replaced by a positive function ceξ where

ξ =

∫
ln | sin η|
(λ2 − 1)2

dλ2 (22)

The presence of the positive variable eξ in Eqs. (20) and (21) does not alter the preceding

analysis, therefore the results remain valid for λ2 that is time-varying. A subtle point in this

case is that the above integral is defined only for η �= 0. This is just an artifact of using η as

the independent variable in integrating Eq. (19), not an indication of an inherent problem

with time-varying λ2. In fact, employing the standard stability theory,9 one can show that

starting from any initial condition |η0| < π, η → 0 for any time-varying λ2 > 1 in Eq. (18).

As η → 0, ṙ from Eq. (16) will remain negative, hence r → 0. A parallel argument will

apply to a time-varying λ1 in the lateral guidance law (10). In conclusion the analysis and

results given above are still correct even for time-varying λ1 and λ2. This conclusion will be

the basis for the validity of the guidance laws when λ1 and λ2 are continuously updated by

adaptation laws, as will be discussed in Section IV.
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III. Terminal Guidance Logic

A. Guidance Parameter Selections

While other types of interceptor guidance approaches exist that can target the typical

final conditions in Eq. (7), few can conveniently handle the unique final conditions Eqs.

(8) and (9). Guidance laws (10) and (11), on the other hand, offer simple ways to address

these requirement by properly selecting the guidance parameters λ1 and λ2. To see this, we

integrate the guidance equation ψ̇com = −λ1θ̇ from t0 to t with the assumption of perfect

tracking ψ̇ = ψ̇com

ψ − ψ0 = −λ1(θ − θ0) (23)

where ψ0 and θ0 are the conditions at t0 which is the first instant when the guidance law

(10) is applied. Suppose that λ1 > 2. By the above discussion the steady-state configuration

is

θss + ψss = −π/2 (24)

Let ψss = Ψf as desired. Then the corresponding steady-state value for θ is

Θf = −π/2 − Ψf (25)

Replacing ψ by Ψf and θ by Θf in Eq. (23), we can solve for the unique value of λ1 required

to achieve ψss = Ψf

λ1 = −Ψf − ψ0

Θf − θ0
= 1 +

δψ0

Θf − θ0
(26)

where

δψ0 = ψ0 −
(
−π

2
− θ0

)
(27)

The quantity δψ0 defined above is simply the initial heading offset of the vehicle with respect

to the origin (target). To recap the discussion, if the value of λ1 given by Eq. (26) is greater

than 2, this λ1 will ensure that the final condition (9) is met. Of course the right hand side

of Eq. (26) may be less than 2 at t0. When this happens, a simple strategy will be discussed
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later to fly the vehicle until the right hand side of Eq. (26) is greater than 2 with the current

value of θ and δψ in place of θ0 and δψ0. From this point on the guidance law (10) with the

λ1 value calculated from Eq. (26) is applied.

A similar discussion applies to guidance law (11). Integrating the guidance equation

γ̇com = −λ2φ̇ with the assumption of perfect tracking γ̇ = γ̇com gives

γ − γ0 = −λ2(φ− φ0) (28)

where γ0 and φ0 are the initial conditions at t0 (where it is understood that this t0 is not

necessarily the same t0 as in the above case). Suppose that λ2 > 2. By the analysis in

the preceding section the trajectory will converge to the configuration where γ = −φ→ γss

for some steady-state value of γss. If we require that γss = Γf , Eq. (28) dictates that the

corresponding λ2 must satisfy

λ2 =
Γf − γ0

Γf + φ0
(29)

provided that λ2 > 2 is also met by the result. For steep impact (Γf close to or equal to -90

deg), the right hand side of Eq. (29) will become greater than 2 only after the vehicle gets

close to the target. Thus a strategy is again to continuously evaluate the value of the right

hand side of Eq. (29) with the current values of γ and φ in place of γ0 and φ0. Once the

computed value is greater than 2, the guidance law (11) is activated with this value for λ2

for the rest of the flight. The λ2 so computed on-board will ensure the satisfaction of the

terminal condition (8) in the guidance.

B. Lateral Guidance Logic

The analysis in Section II suggests the sequence in which the terminal guidance logic

should work: the lateral guidance will first align the heading of the vehicle nearly toward the

target; then the longitudinal guidance will work to bring the flight path angle to the required

value while steering the vehicle to the target, while the lateral guidance maintains the correct

heading. The following lateral guidance logic is designed for the heading alignment.
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1. If Γf = −90 deg in the constraint (8) or constraint (9) is not imposed, a constant λ1 > 2

is used throughout the entire trajectory in the guidance law (10) which is responsible

for the lateral steering.

2. If Γf �= −90 deg, constraint (9) is imposed, and the λ1 calculated from Eq. (26) at the

guidance initiation is less than 2, the bank angle of the vehicle is commanded by

σcom = σmaxsgn(Θf − θ) (30)

where Θf is given in Eq. (25) and θ is the current value of the variable. The sign

function sgn(x) = 1 when x > 0, and sgn(x) = −1 when x < 0. The pre-set limit

σmax ∈ (0, 90) deg is a maximum bank angle to be used for turning. While the

command (30) is applied, the value of λ1 computed from Eq. (26) is continuously

monitored with δψ0 and θ0 replaced by their current values. At the moment when the

λ1 so computed is greater than 2, the current time is set to be t0, and the guidance

logic is switched to Step 3 below for the rest of the trajectory.

3. If Γf �= −90 deg, constraint (9) is imposed, and the λ1 calculated from Eq. (26) at t0

is greater than 2, this λ1 is used in the guidance law (10) for the rest of the terminal

phase flight.

A discussion on the above lateral guidance logic is in order. Step 1 is the simple case

where the constraint (9) is not required. Thus a λ1 > 2 in the guidance law (10) will suffice

according to the conclusions in Section II. When the constraint (9) is enforced, the lateral

guidance logic should always end in Step 3, for the selection of λ1 described in Step 3 ensures

the satisfaction of condition (9). The analysis below establishes that even if the trajectory

starts in Step 2, the logic will eventually switch into Step 3.

From the definition of θ = tan−1(y/x) and Eqs. (1-2), it is easy to show that

d(Θf − θ)

dt
= −θ̇ = −V cos γ sin δψ

s
(31)
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where δψ = ψ − (−π/2 − θ). From Eq. (6) and the above equation, we also have

δψ̇ =
L sin σ

mV cosψ
+
V cos γ sin δψ

s
(32)

Equation (31) indicates that the rate of Θf − θ is essentially proportional to δψ for small

|δψ|. Hence Θf−θ is a slower variable and δψ is a faster variable with respect to any changes

in σ. It can be shown that the bank angle command law in Eq. (30) will always increase

the ratio

δψ

Θf − θ

in all practically possible cases. Therefore as this ratio increases, there will be an instant

when it is greater than 1, and the λ1 computed from Eq. (26) becomes greater than 2, where

δψ0 = δψ and θ0 = θ are used in Eq. (26). Thus Step 2 in the above logic will eventually lead

to Step 3. This conclusion, of course, is contingent on the condition that there is sufficient

time for the vehicle to make the turn. Alternatively, the misalignment in the velocity heading

should not be too large to overcome in a reasonable time period compared with the flight

time in the terminal phase.

It should be commented that the bank angle given by Eq. (30) for the initial turning is

neither unique nor necessarily optimal for a given case. Depending on the initial conditions,

there may be different bank angle profiles in this initial turn, possibly even with opposite

sign than the sign determined in Eq. (30), that can still allow the vehicle to meet its final

heading requirement (see an example in Section IV). But the determination of such alternate

bank angle will require repeated numerical integrations of the equations of motion for the

vehicle. What the strategy in (30) offers is simplicity and assured eventual achievement of

λ1 > 2 as computed from Eq. (26), a key requirement in our guidance approach.

The above lateral guidance logic is included in the flow chart in Fig. 2. The other parts of

the chart, the computation of bank angle/angle of attack commands and further adaptation

of λ1, will be discussed in Sections III-D and IV.
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Figure 2: Flow chart for the lateral guidance logic
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C. Longitudinal Guidance Logic

Once the lateral guidance logic has nearly aligned the heading of the vehicle to the target,

the longitudinal guidance logic will begin to work toward achieving the impact conditions

(7) and (8). As in the case of lateral guidance, certain logic in addition to guidance law (11)

will be needed, which is mainly driven by the condition (8) and the desire to maximize the

impact velocity. Recall that the analysis in Ref. 7 has shown that under guidance law (10)

the angle ψ will approach −π/2−θ monotonically. For the purpose of longitudinal guidance

activation, the end of the heading alignment phase under Step 1 or Step 3 in the lateral

guidance logic may be marked by the condition

|δψ| =

∣∣∣∣∣ψ + Θf +
π

2

∣∣∣∣∣ ≤ ε (33)

where ε > 0 is a small pre-specified constant. When the constraint (9) is not imposed, the

above condition is replaced by

|δψ| =

∣∣∣∣∣ψ + θ +
π

2

∣∣∣∣∣ ≤ ε (34)

The following sequential longitudinal guidance logic is devised:

1. From the beginning of the terminal guidance phase at t = 0 to the end of the heading

alignment phase, the vehicle will fly an angle of attack profile defined by

αtrans = α∗ + (α0 − α∗)e−t/T (35)

where α0 is the angle of attack of the vehicle at t = 0, and α∗ is the angle of attack at

which the vehicle achieves its maximum lift-to-drag (L/D) ratio (α∗ can be a function

of Mach number if needed). The time constant T > 0 is a pre-selected parameter to

ensure reasonably fast transition from α0 to α∗.

2. From the end of the heading alignment phase to the point where the right hand side

of Eq. (29) becomes greater than 2, a λ2 < 1 is used in guidance law (11).
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3. After the instant when the λ2 calculated from Eq. (29) is greater than 2, this value

of λ2 is used in guidance law (11) until the impact (λ2 remains the same value in this

period)

While the vehicle is turning in the heading alignment phase, the objective for flying the

transition angle of attack profile in Eq. (35) is to preserve the energy of the vehicle so that

the impact velocity can be close to the maximum possible value. This maneuver turns out to

be quite similar to what an optimal trajectory would do, as will be seen later. In the second

step of the above logic, the vehicle prepares for the final maneuver to the target. It is in this

phase where the guidance law (11) begins to drive the α to decrease from close to α∗ to a

negative value (we assume that the magnitude of the bank angle is limited within 90 deg).

The value of λ2 should be moderate in this period, for an overly aggressive flight path angle

command could result in a very late occurrence of λ2 > 2 from Eq. (29), leaving little time

for the final maneuver to satisfy the condition (8). Note that a λ2 < 1 can be used in this

phase even though the analysis in Section II states that λ2 > 1 is needed for r → 0. This

is because η = φ + γ is typically positive and less than π/2 (|γ| is still rather small) in this

period. By examining Eqs. (20) and (21), we can show that even for λ2 < 1, η will increase

and r will decrease, only not to zero. But we only need r to decrease in this phase. The last

phase fulfills the requirement for the satisfaction of the impact condition (8). Note that the

lateral guidance law (10) with a constant λ1 > 2 remains in force throughout all the above

longitudinal logic steps.

The above longitudinal guidance logic is incorporated in the flow chart in Fig. 3. The

other components of Fig. 3, including the computation of bank angle/angle of attack com-

mands and adaptation of λ1 and λ2, will be discussed in the next section and Section IV.

D. Bank Angle and Angle of Attack Commands

The realization of the guidance commands from Eqs. (10) and (11) can be through the

modulations of bank angle σ and angle of attack α which in turn will affect the vehicle
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dynamics Eqs. (4-6). To compute the required bank angle command σcom and α-command

αcom, we first find the required aerodynamic lift force to generate the guidance commands

ψ̇com and γ̇com from Eqs. (5) and (6)

Lcom
m

= sgn (V γ̇com + g cos γ)

√
(V ψ̇com cos γ)2 + (V γ̇com + g cos γ)2 (36)

The sign function in the above equation determines whether a positive or negative lift force

is commanded (again, with the assumption of |σ| < 90 deg). Let CLcom be the lift coefficient

required to produce Lcom. Therefore

1

2
ρ(z)V 2SrefCLcom = Lcom (37)

where ρ is the atmospheric density as a function of altitude z, and Sref the reference area

of the vehicle. Based on the required CLcom found in the above equation, the aerodynamic

model of the vehicle is iterated to solve for the corresponding angle of attack αcom at the

current Mach number.

The commanded bank angle σcom is calculated from Eq. (6) with ψ̇ replaced by ψ̇com and

L replaced by Lcom

σcom = sin−1

(
mV ψ̇com cos γ

Lcom

)
(38)

In the case where the value of CLcom computed from Eq. (37) demands an αcom that is

beyond the allowable range for the vehicle, a scaling of the guidance commands may be done.

Suppose that L̄max represents the largest lift force feasible at the current condition (which

can be in the positive or negative direction, depending on the sign of (V γ̇com+ g cos γ)). Let

both ψ̇com and γ̇com be scaled by Kmax > 0 so that the total resulting lift force is equal to

L̄max. To determine Kmax, replace ψ̇com and γ̇com by Kmaxψ̇com and Kmaxγ̇com, and Lcom by

L̄max in Eq. (36). The value of Kmax is the positive root of the quadratic equation

K2
max

[
V 2(ψ̇2

com cos2 γ + γ̇2
com)

]
+Kmax(2V gγ̇com cos γ) +

[
g2 cos2 γ − L̄2

max

m2

]
= 0 (39)

A solution ofKmax < 1 indicates that the guidance commands exceed the vehicle’s capability.

The guidance commands in both channels in such a case need to be scaled back by the same
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factor of Kmax. Alternatively, separate scaling of each channel could be performed. Let

Kψ > 0 and Kγ > 0 be the weightings on ψ̇com and γ̇com, respectively. Within the current

limit of the lift, the emphasis of the guidance can be directed in one channel at the expense

of less guidance effort in the other channel. For instance, we may express Kψ by using Eq.

(36) with the substitutions of ψ̇com and γ̇com by Kψψ̇com and Kγ γ̇com, and Lcom by L̄max

Kψ =
1

|ψ̇com|V cos γ

√
L̄2
max

m2
− (KγV γ̇com + g cos γ)2 (40)

The selection of a Kγ ≤ Kmax will result in a Kψ ≥ Kmax, placing more emphasis on the

heading control than on flight path angle control. The reverse is also true.

In the event when |Lcom| > |L̄max|, and once the scaling factors have been determined,

the angle of attack and bank angle commands are still computed from Eqs. (37) and (38),

only with Lcom replaced by L̄max and ψ̇com by Kψψ̇com.

E. Body Acceleration Commands

Another option for flight control system to realize the guidance commands generated by

the guidance laws (10) and (11) is to track appropriate body acceleration commands. The

advantage of this design is that the feedback of the controlled variables (accelerations) can

be directly provided by accelerometers. The guidance system will determine the acceleration

commands to be tracked so that the velocity vector is steered according to Eqs. (10) and

(11).

Define a velocity frame which has its unit vectors as

iv =
V

V
(41)

jv =
V × R

‖V × R‖ (42)

kv = iv × jv (43)

where V is the relative velocity vector and R is the radius vector from the center of the
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Earth to the vehicle. The vehicle’s acceleration in this velocity frame is given by

a = V̇ iv + ψ̇V cos γjv − γ̇V kv (44)

The body frame fixed to the vehicle is defined in standard convention: the xb-axis coincides

with the body longitudinal axis, the zb-axis points down, and the yb-axis completes the right

hand system.With the assumption of zero sideslip, the coordinate transformation from the

velocity frame to the body frame consists of a sequence of two rotations. The first is the

rotation of a bank angle σ about the velocity vector (iv direction); the second an angle of

attack α about the yb-axis. Using the coordinate transformation and the expression of the

acceleration in the velocity frame in Eq. (44), we obtain the corresponding commanded body

accelerations (including gravity) in the yb and zb axes as

nycom = ψ̇comV cos γ cosσcom − γ̇comV sin σcom (45)

nzcom = V̇com sinαcom − ψ̇comV cos γ cosαcom sin σcom − γ̇comV cosαcom cosσcom (46)

where ψ̇com and γ̇com are from the guidance laws (10) and (11), and σcom and αcom are

computed in Section III-D above. The value of V̇com is from the right hand side of Eq. (4)

with α = αcom in calculating the drag force term D. The command inputs to the control

system in the inner loop will thus be nycom and nzcom. Note that only when αcom ≈ 0 and

σcom ≈ 0 can nycom and nzcom be approximated by

nycom = ψ̇comV cos γ (47)

nzcom = −γ̇comV (48)

IV. Adaptive Update of Guidance Parameters

Assuming perfect navigation data, the above proposed guidance approach typically ren-

ders a precision of within 1 meter on impact position. The impact angle conditions can be

met in many cases within 1 deg. But in some other cases the errors could reach as high as 3

20



to 4 degrees. The possible sources of errors include: (1) the guidance commands briefly ex-

ceed the maneuverability of the vehicle; (2) the rate and acceleration limits on the guidance

commands are momentarily saturated; (3) the analyses are based on steady-state conditions,

yet the the flight is relatively short so the steady state has not been fully achieved at the

termination of flight; (4) appreciable aerodynamic uncertainty exists, due to either modeling

mismatch or the effects of ablation sustained during entry flight; (5) the analyses of the guid-

ance laws are based only on point-mass dynamics, and the guidance parameter selections

assume perfect tracking of the guidance commands; (6) the guidance commands are only

updated at a finite rate. Adding to the sources of errors in an operational environment will

be limited navigation resolution, winds, and modeling uncertainties. Most of these issues

are present to one degree or another in all other guidance and control law synthesis efforts,

and most of the time their influences on the performance of the system are secondary. But

in the case of very high-precision applications such as discussed in this paper, their effects

become non-trivial.

In the guidance logic developed so far, the two parameters λ1 and λ2 are constants once

their values are determined (even though by on-line calculations from Eqs. (26) and (29)).

Recall that these values are selected on the basis of satisfying the impact angle conditions.

But any of the above possible reasons can cause the actual trajectory to be different, thus

the already determined constant values of λ1 and λ2 may no longer ensure the precision of

the impact angle conditions. The application scenarios considered in this paper rule out the

options of adopting more elaborate guidance means or relying on intensive on-line computa-

tion for guidance command generation. Within the framework of the current approach, an

effective way to further enhance the precision is appropriate closed-loop adaptation for λ1

and λ2. We present in the following a novel approach to establish the adaptive update laws

for the problem at hand.

Let us consider the vertical guidance law (11) first. We will use the altitude z as the

independent variable for the update of λ2. Note that Eq. (11) has the same form whether
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the differentiation is with respect to time or altitude (or any other independent variable).

Treat λ2 as a z-dependent function instead of a constant. Integrating both sides of Eq. (11)

once, the right hand side by parts, one obtains

γ − γ0 = −λ2φ+ λ20φ0 +

∫ z

z0

φλ′2dz (49)

where z0 is an arbitrary initial altitude, z a later altitude, and λ′2 = dλ2/dz. The subscript

“0” indicates the values at z0. Suppose that λ2 remains greater than 2 even though it is

varying. From the conclusion at the end of Section II we know that as z → 0, γ + φ → 0.

With a given initial value for λ2, we want to find λ′2 so that γ → Γf , thus φ → −Γf . In

addition, we will seek the simplest form of update of λ2 so λ′2 is a constant. As a result, at

z = 0 we have λ2 = λ20 − z0λ
′
2. At z = 0, the substitution of these conditions into Eq. (49)

produces

Γf − γ0 = (λ20 − z0λ
′
2)Γf + λ20φ0 + λ′2

∫ 0

z0

φ dz (50)

Since φ = φ0 at z0 and φ = −Γf at z = 0, the integral in above equation is further

approximated by the well-known trapezoidal rule for quadratures

∫ 0

z0

φ dz ≈ 1

2
(Γf − φ0) z0 (51)

Replace the integral in Eq. (50) by the above relationship, and solve for λ′2

λ′2 = −2
[(1 − λ20)Γf − γ0 − λ20φ0]

z0(φ0 + Γf)
(52)

Since z0 is arbitrary, we can let z0 be the current altitude at any instant and drop all the

subscripts 0 in the above equation. Moreover, the coefficient 2 in the above equation may be

replaced by a constant gain κ2 > 0 to allow the flexibility of tuning for desired adaptation

rate. Recall that the differentiation in the above equation is with respect to the altitude z.

Our final closed-loop adaptation law for λ2 is

dλ2

dz
= −κ2

[(1 − λ2)Γf − γ − λ2φ]

z(φ + Γf)
=
κ2

z

(
λ2 +

∆γ

∆φ

)
(53)
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where

∆φ = (−Γf) − φ, ∆γ = Γf − γ (54)

If for any reason the adaptation with time as the independent variable is preferred, the

adaptation law is simply

λ̇2 =
κ2

z
V sin γ

(
λ2 +

∆γ

∆φ

)
(55)

It is worth noting that one would not be able to derive adaptation law (55) if time is used

as the independent variable at the outset.

In Step 3 of the longitudinal guidance logic, the starting value for λ2 is determined by

Eq. (29) at the instant when the right hand side of Eq. (29) becomes greater than 2.

The subsequent values of λ2 are then updated according to Eq. (53) or (55) instead of

remaining at the same constant. As the trajectory approaches the desired configuration

where ∆φ = ∆γ = 0, it can be shown by using L’Hospital’s rule and the guidance law (11)

that

lim
∆γ→0, ∆φ→0

(
∆γ

∆φ

)
→
(
γ̇

φ̇

)
= −λ2 (56)

Therefore λ̇2 → 0 by the adaptation law (55), i.e., the gain adaptation stops. The validity

of the guidance law (11) under a varying λ2 has been established at the end of Section II.

A similar process applied to the lateral guidance law (10) will lead to the update law for

λ1 as

dλ1

ds
= −κ1

[(1 − λ1)Ψf − ψ − λ1(θ + π/2)]

s[θ + Ψf + π/2]
=
κ1

s

(
λ1 +

∆ψ

∆θ

)
(57)

where

∆θ = −(Ψf + π/2) − θ, ∆ψ = Ψf − ψ (58)

The parameter κ1 > 0 is a constant gain, and the derivative in the adaptation law Eq. (57)

is with respect to the range-to-go s. If time is desired to be the independent variable, the

adaptation law is then

λ̇1 = −κ1

s
V cos γ

(
λ1 +

∆ψ

∆θ

)
(59)
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Again, it can be shown by using L’Hospital rule and guidance law (10) that as the trajectory

approaches the final configuration where ∆θ = ∆ψ = 0, we will have

lim
∆θ→0, ∆ψ→0

(
∆ψ

∆θ

)
→
(
ψ̇

θ̇

)
= −λ1 (60)

Thus λ̇1 → 0 by Eq. (59), and the adaptation of λ1 stops. The adaptation of λ1 is not

needed when the final heading constraint (9) is not imposed, because a constant λ1 > 2 is all

that is required in this case. This “bypass” is clearly shown in Fig. 2. The complete lateral

and longitudinal guidance logics including the guidance parameter adaptation are illustrated

in Figs. 2 and 3.

To avoid the singularities of the adaptation laws (53) and (57) at the origin where z =

s = 0, the parameter adaptation is stopped at a distance before the origin is reached without

practical impact on the precision, for the effects of the guidance parameter adaptation are

diminished as the vehicle gets very close to the target.

V. Simulations

The adaptive terminal guidance logic presented in Sections II–IV is applied in simula-

tions to the guidance of a hypersonic lifting vehicle of about 680 kg (1,500 lb) in weight. The

vehicle features a bi-conic configuration with 4 control surfaces. The nonlinear aerodynamic

model of the vehicle is Mach- and angle of attack-dependent. The first scenario is for vertical

impact on the target, so the final heading constraint (9) is not imposed. The second ex-

ample involves non-vertical impact and constrained final heading condition (9). The initial

conditions for the terminal phase flight in both cases are those at the end of the simulated

entry trajectories of the vehicle. The continuities in both bank angle and angle of attack

from their respective values at the end of entry flight are preserved in the terminal phase

trajectories. The atmospheric properties used in the simulations are based on the 1976 U.S.

Standard Atmosphere.10 The 3DOF equations of motion over a rotating spherical Earth are

used to simulate the vehicle trajectories. The guidance commands are generated at 2 HZ
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rate and then subject to maximum allowable magnitude, rate and acceleration limits before

they are applied in the simulations. Even though the assumption of perfect tracking of the

guidance commands is made in the guidance law analysis, the control limits and finite guid-

ance update rate do cause imperfect tracking in the simulations. Still the feedback nature

of the guidance laws and the guidance parameter adaptation ensure excellent results as will

be seen.

In both cases the corresponding open-loop optimal trajectories are also found for com-

parison purposes. The performance index of optimization is the maximization of the final

velocity. The optimal control problem is converted to a nonlinear programming problem by

parameterizing the time histories of bank angle and angle of attack with piecewise linear

functions of time. The equations of motion are numerically integrated from the given initial

conditions to obtain the state histories, and the final state in particular. The impact condi-

tion constraints (7), (8) and (9) (when it is imposed) are enforced. A sequential quadratic

programming algorithm in MATLAB is then used to solve the nonlinear programming prob-

lem. The starting guesses to the optimization problems are completely independent of the

simulated trajectories under the guidance laws.

A. Vertical Impact

In this case Γf = −90 deg in constraint (8), and constraint (9) is ignored. The initial

conditions are given as

s0 = 179.387 km, z0 = 40.002 km, θ0 = −173.14 deg

V0 = 2304 m/s, γ0 = −1.46 deg, δψ0 = 5.19 deg (61)

σ0 = 34.58 deg, α0 = 28.94 deg

In this case a constant λ1 = 3 is used in the lateral guidance law (10) throughout the

terminal phase (Step 1 of the lateral guidance logic). It is easy to verify that the given initial

conditions do not make λ2 > 2 when λ2 is calculated from Eq. (29). Hence the longitudinal
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guidance logic steps described in Section III-C are employed to steer the trajectory in the

vertical direction. For the vehicle model used, the maximum L/D ratio takes places at about

α∗ = 11 deg in the range of Mach number variations during the terminal guided flight. Thus

α∗ = 11 deg, and T = 25 s are used in Eq. (35). A value of λ2 = 0.8 is used in Step 2 of

the longitudinal guidance logic until the right hand side of Eq. (29) becomes greater than

2. The simulation stops when the altitude reduces to zero.

The final impact conditions from the simulation are

sf = 0.05 m, γf = −89.97 deg, Vf = 750.7 m/s (Mach 2.21) (62)

It should be kept in mind that even though the above precision level in miss distance and

impact angle may seem unrealistic because no navigation errors are included, the simula-

tions are only intended to demonstrate the capability of the guidance algorithm alone. In

comparison to the above final velocity in the closed-loop simulation, the open-loop optimal

solution yields a final velocity of 811.1 m/s (Mach 2.38). It should be mentioned that in the

optimal solutions the bank angle and angle of attack profiles are not constrained by rate and

acceleration limits, which contributes (unrealistically) to the higher final velocity. Figure 4

shows the comparison of the variations of flight path angle versus altitude and Mach number

versus range-to-go along the guided and optimal trajectories. The three-dimensional flight

paths for both the optimal and guided trajectories are depicted in Fig. 5. Figure 6 contains

the variations of bank angle and angle of attack. It is observed that, despite two completely

different approaches, the qualitative behaviors of the bank angle profiles along the optimal

and guided trajectories, as well as the angle of attack profiles, are remarkably similar. At

about 45 seconds into the terminal phase flight, the right hand side of Eq. (29) becomes

greater than 2, and λ2 is switched from 0.8 to this value. The bank angle and angle of attack

histories in Fig. 6 clearly indicate this change. Remarkably, the optimal bank angle and

optimal angle of attack profiles in Fig. 6 exhibit similar transitions (a moment later) even

though nothing in the formulation of the optimal control problem forces such behaviors.
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The initial guesses to the optimal profiles used in the numerical optimization are not at all

related to the guided trajectories.

It is shown in Ref. 11 that in one-dimensional cases, a proportional-navigation guidance

law with a proportional constant of 3 approximates an optimal guidance law. The obser-

vations made here lead to an interesting conjecture: when the final heading angle is not

constrained, the guidance logic developed in Section III for 3-D flight may also be made to

approximate the optimal guidance solution by selecting appropriate values for the parameters

in the logic (e.g., λ1, λ2, ε and T ).

The guidance parameter adaptation law (53) developed in Section IV is also implemented

in the simulations (λ1 remains a constant of 3 in this case because no final heading constraint

is present). A gain of κ2 = 4 is used. At about 87 seconds into the terminal phase, the right

hand side of Eq. (29) yields a value greater than 2. This is when Step 3 of the longitudinal

guidance logic is activated, and the adaptation for λ2 by Eq. (53) begins at the same time.

Figure 7 shows the history of λ2. The changes in λ2 are relatively small. The adaptation

stops about one second before impact. The high precision of the final flight path angle shown

in the final conditions (62) is representative of the effectiveness of the gain adaptation.

B. Non-Vertical Impact

The terminal values in constraints (8) and (9) are specified to be

Γf = −60 deg (63)

Ψf = 88 deg (64)

The initial conditions are

s0 = 366.065 km, z0 = 45.060 km, θ0 = −172.68 deg

V0 = 2962.67 m/s, γ0 = −0.87 deg, δψ0 = −3.97 deg (65)

σ0 = 27.61 deg, α0 = 31.74 deg
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Figure 4: Flight path angle and Mach number for the vertical impact case

These initial conditions are from the same entry trajectory as in previous case, but the entry

flight is terminated earlier to allow more time for the terminal phase guidance to meet the

heading constraint at the impact. The above initial conditions cause the lateral guidance

logic to start in Step 2 of Section III-B, and the longitudinal guidance logic in Step 2 of

Section III-C. Other simulation settings and parameters are the same as in the previous

case.

The final conditions of the guided trajectory in this case are

sf = 0.03 m, γf = −60.02 deg, ψf = 88.01 deg, Vf = 943.1 m/s (Mach 2.77) (66)

Figure 8 shows the 3D trajectories. The ground tracks in Fig. 8 indicate that the trajectories

now approach the same target from a direction different than in Fig. 5, a result of the

final heading angle constraint now enforced. The optimal solution in this case gives a final

velocity of 1110.7 m/s (Mach 3.26). Figure 9 reveals the reason why the guided trajectory
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Figure 5: Three-dimensional trajectories for the vertical impact case

in this case has appreciable performance difference as compared to the optimal trajectory.

Step 2 in the lateral guidance logic in this case commands initially a large negative bank

angle. The optimal bank angle profile, on the other hand, decides to stay nearly constant

at about +25 deg for almost 90 seconds. This is a feature that can only be discovered with

extensive numerical searches required in an optimal solution. This key distinction contributes

dominantly to the performance difference. As discussed in Section III-B, Step 2 in the lateral

guidance logic is designed for its simplicity, not optimality. For some other initial conditions,

the lateral guidance logic can actually produce a trajectory much closer to the optimal one.

Nonetheless we choose the current case to illustrate the possible difference.

Another noteworthy phenomenon in the optimal bank angle history in Fig. 9 is that the

bank angle at the end is not zero. This means that the optimal trajectory is still turning at

the end, which makes sense because for the same amount of heading change, smaller bank
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Figure 6: Angle of attack and bank angle for the vertical impact case

angle will be needed near the end where the velocity is lowest along the trajectory. Without

using large bank earlier the trajectory is kept aloft, thus minimizing the velocity loss. But

nonzero bank angle at the end also suggests that the vehicle’s heading angle is not in steady

state. Therefore the timing and the bank angle must match perfectly to achieve the specified

final heading angle. Again this is something that requires heavy computation, and cannot

be attained with simple logic.

The parameter adaptation laws (53) and (57) with κ1 = κ2 = 4 are responsible for

the high accuracy in the final conditions of the impact angles in this case. Without the

adaptation, the final conditions would have been γf = −58.75 deg and ψf = 88.36 deg,

respectively. In Fig. 10 the variation of λ1 is plotted. The execution of Step 2 of the

lateral guidance logic (Eq. (30)) takes about 10 seconds at the beginning of the terminal

phase. After that, Step 3 of the lateral guidance logic becomes active, and this is when

the adaptation of λ1 starts. The value of λ1 stays nearly constant until Step 2 (and then
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Step 3) of the longitudinal guidance logic begins to take effect. The coupling effects of the

longitudinal maneuvers cause the adaptation law (57) to sense the need for final adjustments

in the heading in order to meet the constraint Eq. (64). The large variation of λ1 in Fig.

10 underscores the difficulty of changing the heading of a hypervelocity vehicle, even for

relatively small corrections. Figure 11 contains the adaptation history of λ2 for this case,

which is comparatively minor.

The remarkable possibility of achieving near optimality by the guidance logic proposed

in the case of unconstrained final heading angle is even more evident in this example. For

the same initial conditions as in Eq. (65), suppose that only constraint (63) is required, not

Eq. (64). The lateral guidance law is just Eq. (10) with a constant λ1 = 3 throughout

the trajectory. The guided trajectory this time yields a final velocity of 1, 030.7 m/s with

γf = −60.03 deg and sf = 0.0004 m. In contrast, the optimal trajectory without the

final heading constraint Eq. (64) produces a final velocity of 1116.5 m/s. The performance

difference between the two is significantly smaller in this case. Figure 12 illustrates the

comparison of the angle of attack and bank angle histories. Except initially, the angle of

attack profiles match quite well in about 2/3 of the flight. The bank angle histories, on the
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other hand, are very close to each other throughout the trajectory.

VI. Conclusions

The need to guide a hypersonic lifting vehicle in terminal phase intended to impact

a ground target with stringent specified impact direction arises from a recent technology

development effort. We have found that an adaptive proportional-navigation guidance ap-

proach is effective to this problem and easy to implement. Our analysis establishes the

theoretical attainment of the targeting conditions by the guided trajectories without rely-

ing on linearization or other simplifying assumptions. We provide closed-form conditions

for the on-line selection of the initial values of the guidance parameters for satisfying the

unique final impact angle requirements. For ensured high precision in the impact angle con-

ditions, continuous closed-loop update of these parameters are necessary. For this purpose

we further develop nonlinear parameter adaptation laws. The guidance logic developed is

demonstrated to be accurate in 3 degrees-of-freedom simulations where the full nonlinear

point-mass dynamics are included. It is interesting to note that in the absence of a final

heading constraint, the trajectories under the proposed guidance logic behave in a similar

fashion to optimal solutions that are generated off-line.
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Figure 8: Three-dimensional trajectories for the non-vertical impact case
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Figure 9: Angle of attack and bank angle for the non-vertical impact case with final heading
constraint
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Figure 10: The adaptation history of λ1 for the non-vertical impact case with final heading
angle constraint
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Figure 11: The adaptation history of λ2 for the non-vertical impact case
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Figure 12: Angle of attack and bank angle for the non-vertical impact case without the final
heading constraint
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